
2
Congruences

This chapter introduces the basic properties of congruences modulo n, along with
the related notion of residue classes modulo n. Other items discussed include the
Chinese remainder theorem, Euler’s phi function, Euler’s theorem, Fermat’s little
theorem, quadratic residues, and finally, summations over divisors.

2.1 Equivalence relations
Before discussing congruences, we review the definition and basic properties of
equivalence relations.

Let S be a set. A binary relation ∼ on S is called an equivalence relation if it is

reflexive: a ∼ a for all a ∈ S,

symmetric: a ∼ b implies b ∼ a for all a, b ∈ S, and

transitive: a ∼ b and b ∼ c implies a ∼ c for all a, b, c ∈ S.

If ∼ is an equivalence relation on S, then for a ∈ S one defines its equivalence
class as the set {x ∈ S : x ∼ a}.

Theorem 2.1. Let ∼ be an equivalence relation on a set S, and for a ∈ S, let [a]
denote its equivalence class. Then for all a, b ∈ S, we have:

(i) a ∈ [a];

(ii) a ∈ [b] implies [a] = [b].

Proof. (i) follows immediately from reflexivity. For (ii), suppose a ∈ [b], so that
a ∼ b by definition. We want to show that [a] = [b]. To this end, consider any
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x ∈ S. We have

x ∈ [a] =⇒ x ∼ a (by definition)

=⇒ x ∼ b (by transitivity, and since x ∼ a and a ∼ b)

=⇒ x ∈ [b].

Thus, [a] ⊆ [b]. By symmetry, we also have b ∼ a, and reversing the roles of a and
b in the above argument, we see that [b] ⊆ [a]. 2

This theorem implies that each equivalence class is non-empty, and that each
element of S belongs to a unique equivalence class; in other words, the distinct
equivalence classes form a partition of S (see Preliminaries). A member of an
equivalence class is called a representative of the class.

EXERCISE 2.1. Consider the relations =, ≤, and < on the set R. Which of these
are equivalence relations? Explain your answers.

EXERCISE 2.2. Let S := (R × R) \ {(0, 0)}. For (x, y), (x′, y′) ∈ S, let us say
(x, y) ∼ (x′, y′) if there exists a real number λ > 0 such that (x, y) = (λx′, λy′).
Show that ∼ is an equivalence relation; moreover, show that each equivalence class
contains a unique representative that lies on the unit circle (i.e., the set of points
(x, y) such that x2 + y2 = 1).

2.2 Definitions and basic properties of congruences
Let n be a positive integer. For integers a and b, we say that a is congruent to b
modulo n if n | (a − b), and we write a ≡ b (mod n). If n - (a − b), then we write
a 6≡ b (mod n). Equivalently, a ≡ b (mod n) if and only if a = b + ny for some
y ∈ Z. The relation a ≡ b (mod n) is called a congruence relation, or simply, a
congruence. The number n appearing in such congruences is called the modulus
of the congruence. This usage of the “mod” notation as part of a congruence is not
to be confused with the “mod” operation introduced in §1.1.

If we view the modulus n as fixed, then the following theorem says that the
binary relation “· ≡ · (mod n)” is an equivalence relation on the set Z.

Theorem 2.2. Let n be a positive integer. For all a, b, c ∈ Z, we have:

(i) a ≡ a (mod n);

(ii) a ≡ b (mod n) implies b ≡ a (mod n);

(iii) a ≡ b (mod n) and b ≡ c (mod n) implies a ≡ c (mod n).

Proof. For (i), observe that n divides 0 = a − a. For (ii), observe that if n divides
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a− b, then it also divides −(a− b) = b− a. For (iii), observe that if n divides a− b
and b − c, then it also divides (a − b) + (b − c) = a − c. 2

Another key property of congruences is that they are “compatible” with integer
addition and multiplication, in the following sense:

Theorem 2.3. Let a, a′, b, b′, n ∈ Z with n > 0. If

a ≡ a′ (mod n) and b ≡ b′ (mod n),

then

a + b ≡ a′ + b′ (mod n) and a · b ≡ a′ · b′ (mod n).

Proof. Suppose that a ≡ a′ (mod n) and b ≡ b′ (mod n). This means that there
exist integers x and y such that a = a′ + nx and b = b′ + ny. Therefore,

a + b = a′ + b′ + n(x + y),

which proves the first congruence of the theorem, and

ab = (a′ + nx)(b′ + ny) = a′b′ + n(a′y + b′x + nxy),

which proves the second congruence. 2

Theorems 2.2 and 2.3 allow one to work with congruence relations modulo n
much as one would with ordinary equalities: one can add to, subtract from, or
multiply both sides of a congruence modulo n by the same integer; also, if b is
congruent to a modulo n, one may substitute b for a in any simple arithmetic
expression (involving addition, subtraction, and multiplication) appearing in a con-
gruence modulo n.

Now suppose a is an arbitrary, fixed integer, and consider the set of integers z
that satisfy the congruence z ≡ a (mod n). Since z satisfies this congruence if
and only if z = a + ny for some y ∈ Z, we may apply Theorems 1.4 and 1.5
(with a as given, and b := n) to deduce that every interval of n consecutive integers
contains exactly one such z. This simple fact is of such fundamental importance
that it deserves to be stated as a theorem:

Theorem 2.4. Let a, n ∈ Z with n > 0. Then there exists a unique integer z such
that z ≡ a (mod n) and 0 ≤ z < n, namely, z := a mod n. More generally, for
every x ∈ R, there exists a unique integer z ∈ [x, x + n) such that z ≡ a (mod n).

Example 2.1. Let us find the set of solutions z to the congruence

3z + 4 ≡ 6 (mod 7). (2.1)
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Suppose that z is a solution to (2.1). Subtracting 4 from both sides of (2.1), we
obtain

3z ≡ 2 (mod 7). (2.2)

Next, we would like to divide both sides of this congruence by 3, to get z by itself
on the left-hand side. We cannot do this directly, but since 5 · 3 ≡ 1 (mod 7), we
can achieve the same effect by multiplying both sides of (2.2) by 5. If we do this,
and then replace 5 · 3 by 1, and 5 · 2 by 3, we obtain

z ≡ 3 (mod 7).

Thus, if z is a solution to (2.1), we must have z ≡ 3 (mod 7); conversely, one can
verify that if z ≡ 3 (mod 7), then (2.1) holds. We conclude that the integers z that
are solutions to (2.1) are precisely those integers that are congruent to 3 modulo 7,
which we can list as follows:

. . . ,−18,−11,−4, 3, 10, 17, 24, . . . 2

In the next section, we shall give a systematic treatment of the problem of solving
linear congruences, such as the one appearing in the previous example.

EXERCISE 2.3. Let a, b, n ∈ Z with n > 0. Show that a ≡ b (mod n) if and only if
(a mod n) = (b mod n).

EXERCISE 2.4. Let a, b, n ∈ Z with n > 0 and a ≡ b (mod n). Also, let
c0, c1, . . . , ck ∈ Z. Show that

c0 + c1a + · · · + ckak ≡ c0 + c1b + · · · + ckbk (mod n).

EXERCISE 2.5. Let a, b, n, n′ ∈ Z with n > 0, n′ > 0, and n′ | n. Show that if
a ≡ b (mod n), then a ≡ b (mod n′).

EXERCISE 2.6. Let a, b, n, n′ ∈ Z with n > 0, n′ > 0, and gcd(n, n′) = 1. Show
that if a ≡ b (mod n) and a ≡ b (mod n′), then a ≡ b (mod nn′).

EXERCISE 2.7. Let a, b, n ∈ Z with n > 0 and a ≡ b (mod n). Show that
gcd(a, n) = gcd(b, n).

EXERCISE 2.8. Let a be a positive integer whose base-10 representation is a =
(ak−1 · · · a1a0)10. Let b be the sum of the decimal digits of a; that is, let b :=
a0+a1+ · · ·+ak−1. Show that a ≡ b (mod 9). From this, justify the usual “rules of
thumb” for determining divisibility by 9 and 3: a is divisible by 9 (respectively, 3)
if and only if the sum of the decimal digits of a is divisible by 9 (respectively, 3).
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EXERCISE 2.9. Let e be a positive integer. For a ∈ {0, . . . , 2e − 1}, let ã denote
the integer obtained by inverting the bits in the e-bit, binary representation of a
(note that ã ∈ {0, . . . , 2e − 1}). Show that ã + 1 ≡ −a (mod 2e). This justifies the
usual rule for computing negatives in 2’s complement arithmetic (which is really
just arithmetic modulo 2e).

EXERCISE 2.10. Show that the equation 7y3 + 2 = z3 has no solutions y, z ∈ Z.

EXERCISE 2.11. Show that there are 14 distinct, possible, yearly (Gregorian)
calendars, and show that all 14 calendars actually occur.

2.3 Solving linear congruences
In this section, we consider the general problem of solving linear congruences.
More precisely, for a given positive integer n, and arbitrary integers a and b, we
wish to determine the set of integers z that satisfy the congruence

az ≡ b (mod n). (2.3)

Observe that if (2.3) has a solution z, and if z ≡ z′ (mod n), then z′ is also a
solution to (2.3). However, (2.3) may or may not have a solution, and if it does,
such solutions may or may not be uniquely determined modulo n. The following
theorem precisely characterizes the set of solutions of (2.3); basically, it says that
(2.3) has a solution if and only if d := gcd(a, n) divides b, in which case the
solution is uniquely determined modulo n/d.

Theorem 2.5. Let a, n ∈ Z with n > 0, and let d := gcd(a, n).

(i) For every b ∈ Z, the congruence az ≡ b (mod n) has a solution z ∈ Z if
and only if d | b.

(ii) For every z ∈ Z, we have az ≡ 0 (mod n) if and only if z ≡ 0 (mod n/d).

(iii) For all z, z′ ∈ Z, we have az ≡ az′ (mod n) if and only if z ≡ z′ (mod n/d).

Proof. For (i), let b ∈ Z be given. Then we have

az ≡ b (mod n) for some z ∈ Z
⇐⇒ az = b + ny for some z, y ∈ Z (by definition of congruence)

⇐⇒ az − ny = b for some z, y ∈ Z
⇐⇒ d | b (by Theorem 1.8).

For (ii), we have

n | az ⇐⇒ n/d | (a/d)z ⇐⇒ n/d | z.

All of these implications follow rather trivially from the definition of divisibility,
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except that for the implication n/d | (a/d)z =⇒ n/d | z, we use Theorem 1.9
and the fact that gcd(a/d, n/d) = 1.

For (iii), we have

az ≡ az′ (mod n) ⇐⇒ a(z − z′) ≡ 0 (mod n)

⇐⇒ z − z′ ≡ 0 (mod n/d) (by part (ii))

⇐⇒ z ≡ z′ (mod n/d). 2

We can restate Theorem 2.5 in more concrete terms as follows. Let a, n ∈ Z
with n > 0, and let d := gcd(a, n). Let In := {0, . . . , n − 1} and consider the
“multiplication by a” map

τa : In → In

z 7→ az mod n.

The image of τa consists of the n/d integers

i · d (i = 0, . . . , n/d − 1).

Moreover, every element b in the image of τa has precisely d pre-images

z0 + j · (n/d) (j = 0, . . . , d − 1),

where z0 ∈ {0, . . . , n/d − 1}. In particular, τa is a bijection if and only if a and n
are relatively prime.

Example 2.2. The following table illustrates what Theorem 2.5 says for n = 15
and a = 1, 2, 3, 4, 5, 6.

z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2z mod 15 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13
3z mod 15 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12
4z mod 15 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11
5z mod 15 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
6z mod 15 0 6 12 3 9 0 6 12 3 9 0 6 12 3 9

In the second row, we are looking at the values 2z mod 15, and we see that this
row is just a permutation of the first row. So for every b, there exists a unique z
such that 2z ≡ b (mod 15). This is implied by the fact that gcd(2, 15) = 1.

In the third row, the only numbers hit are the multiples of 3, which follows from
the fact that gcd(3, 15) = 3. Also note that the pattern in this row repeats every five
columns; that is, 3z ≡ 3z′ (mod 15) if and only if z ≡ z′ (mod 5).

In the fourth row, we again see a permutation of the first row, which follows
from the fact that gcd(4, 15) = 1.
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In the fifth row, the only numbers hit are the multiples of 5, which follows from
the fact that gcd(5, 15) = 5. Also note that the pattern in this row repeats every
three columns; that is, 5z ≡ 5z′ (mod 15) if and only if z ≡ z′ (mod 3).

In the sixth row, since gcd(6, 15) = 3, we see a permutation of the third row.
The pattern repeats after five columns, although the pattern is a permutation of the
pattern in the third row. 2

We develop some further consequences of Theorem 2.5.

A cancellation law. Let a, n ∈ Z with n > 0. Part (iii) of Theorem 2.5 gives us a
cancellation law for congruences:

if gcd(a, n) = 1 and az ≡ az′ (mod n), then z ≡ z′ (mod n).

More generally, if d := gcd(a, n), then we can cancel a from both sides of a con-
gruence modulo n, as long as we replace the modulus by n/d.

Example 2.3. Observe that

5 · 2 ≡ 5 · (−4) (mod 6). (2.4)

Part (iii) of Theorem 2.5 tells us that since gcd(5, 6) = 1, we may cancel the
common factor of 5 from both sides of (2.4), obtaining 2 ≡ −4 (mod 6), which
one can also verify directly.

Next observe that

15 · 5 ≡ 15 · 3 (mod 6). (2.5)

We cannot simply cancel the common factor of 15 from both sides of (2.5); indeed,
5 6≡ 3 (mod 6). However, gcd(15, 6) = 3, and as part (iii) of Theorem 2.5 guaran-
tees, we do indeed have 5 ≡ 3 (mod 2). 2

Modular inverses. Again, let a, n ∈ Z with n > 0. We say that z ∈ Z is a
multiplicative inverse of a modulo n if az ≡ 1 (mod n). Part (i) of Theorem 2.5
says that a has a multiplicative inverse modulo n if and only if gcd(a, n) = 1.
Moreover, part (iii) of Theorem 2.5 says that the multiplicative inverse of a, if
it exists, is uniquely determined modulo n; that is, if z and z′ are multiplicative
inverses of a modulo n, then z ≡ z′ (mod n). Note that if z is a multiplicative
inverse of a modulo n, then a is a multiplicative inverse of z modulo n. Also note
that if a ≡ a′ (mod n), then z is a multiplicative inverse of a modulo n if and only
if z is a multiplicative inverse of a′ modulo n.

Now suppose that a, b, n ∈ Z with n > 0, a 6= 0, and gcd(a, n) = 1. Theorem 2.5
says that there exists a unique integer z satisfying

az ≡ b (mod n) and 0 ≤ z < n.
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Setting s := b/a ∈ Q, we may generalize the “mod” operation, defining s mod
n to be this value z. As the reader may easily verify, this definition of s mod n
does not depend on the particular choice of fraction used to represent the rational
number s. With this notation, we can simply write a−1 mod n to denote the unique
multiplicative inverse of a modulo n that lies in the interval 0, . . . , n − 1.

Example 2.4. Looking back at the table in Example 2.2, we see that

2−1 mod 15 = 8 and 4−1 mod 15 = 4,

and that neither 3, 5, nor 6 have modular inverses modulo 15. 2

Example 2.5. Let a, b, n ∈ Z with n > 0. We can describe the set of solutions z ∈ Z
to the congruence az ≡ b (mod n) very succinctly in terms of modular inverses.

If gcd(a, n) = 1, then setting t := a−1 mod n, and z0 := tb mod n, we see that
z0 is the unique solution to the congruence az ≡ b (mod n) that lies in the interval
{0, . . . , n − 1}.

More generally, if d := gcd(a, n), then the congruence az ≡ b (mod n) has
a solution if and only if d | b. So suppose that d | b. In this case, if we set
a′ := a/d, b′ := b/d, and n′ := n/d, then for each z ∈ Z, we have az ≡ b (mod n)
if and only if a′z ≡ b′ (mod n′). Moreover, gcd(a′, n′) = 1, and therefore, if
we set t := (a′)−1 mod n′ and z0 := tb′ mod n′, then the solutions to the con-
gruence az ≡ b (mod n) that lie in the interval {0, . . . , n − 1} are the d integers
z0, z0 + n′, . . . , z0 + (d − 1)n′. 2

EXERCISE 2.12. Let a1, . . . , ak, b, n be integers with n > 0. Show that the con-
gruence

a1z1 + · · · + akzk ≡ b (mod n)

has a solution z1, . . . , zk ∈ Z if and only if d | b, where d := gcd(a1, . . . , ak, n).

EXERCISE 2.13. Let p be a prime, and let a, b, c, e be integers, such that e > 0,
a 6≡ 0 (mod pe+1), and 0 ≤ c < pe. Define N to be the number of integers
z ∈ {0, . . . , p2e − 1} such that

⌊(

(az + b) mod p2e
)

/

pe
⌋

= c.

Show that N = pe.

2.4 The Chinese remainder theorem
Next, we consider systems of linear congruences with respect to moduli that are
relatively prime in pairs. The result we state here is known as the Chinese remain-
der theorem, and is extremely useful in a number of contexts.
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Theorem 2.6 (Chinese remainder theorem). Let {ni}ki=1 be a pairwise relatively
prime family of positive integers, and let a1, . . . , ak be arbitrary integers. Then
there exists a solution a ∈ Z to the system of congruences

a ≡ ai (mod ni) (i = 1, . . . , k).

Moreover, any a′ ∈ Z is a solution to this system of congruences if and only if
a ≡ a′ (mod n), where n :=

∏k
i=1 ni.

Proof. To prove the existence of a solution a to the system of congruences, we first
show how to construct integers e1, . . . , ek such that for i, j = 1, . . . , k, we have

ej ≡
{

1 (mod ni) if j = i,
0 (mod ni) if j 6= i.

(2.6)

If we do this, then setting

a :=
k
∑

i=1

aiei,

one sees that for j = 1, . . . , k, we have

a ≡
k
∑

i=1

aiei ≡ aj (mod nj),

since all the terms in this sum are zero modulo nj, except for the term i = j, which
is congruent to aj modulo nj.

To construct e1, . . . , ek satisfying (2.6), let n :=
∏k

i=1 ni as in the statement of
the theorem, and for i = 1, . . . , k, let n∗i := n/ni; that is, n∗i is the product of all
the moduli nj with j 6= i. From the fact that {ni}ki=1 is pairwise relatively prime,
it follows that for i = 1, . . . , k, we have gcd(ni, n∗i ) = 1, and so we may define
ti := (n∗i )−1 mod ni and ei := n∗i ti. One sees that ei ≡ 1 (mod ni), while for j 6= i,
we have ni | n∗j , and so ej ≡ 0 (mod ni). Thus, (2.6) is satisfied.

That proves the existence of a solution a to the given system of congruences. If
a ≡ a′ (mod n), then since ni | n for i = 1, . . . , k, we see that a′ ≡ a ≡ ai (mod ni)
for i = 1, . . . , k, and so a′ also solves the system of congruences.

Finally, if a′ is a solution to the given system of congruences, then a ≡ ai ≡
a′ (mod ni) for i = 1, . . . , k. Thus, ni | (a − a′) for i = 1, . . . , k. Since {ni}ki=1 is
pairwise relatively prime, this implies n | (a−a′), or equivalently, a≡ a′ (mod n). 2

We can restate Theorem 2.6 in more concrete terms, as follows. For each positive
integer m, let Im denote {0, . . . ,m − 1}. Suppose {ni}ki=1 is a pairwise relatively
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prime family of positive integers, and set n := n1 · · · nk. Then the map

τ : In → In1 × · · · × Ink
a 7→ (a mod n1, . . . , a mod nk)

is a bijection.

Example 2.6. The following table illustrates what Theorem 2.6 says for n1 = 3
and n2 = 5.

a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
a mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
a mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

We see that as a ranges from 0 to 14, the pairs (a mod 3, a mod 5) range over
all pairs (a1, a2) with a1 ∈ {0, 1, 2} and a2 ∈ {0, . . . , 4}, with every pair being hit
exactly once. 2

EXERCISE 2.14. Compute the values e1, e2, e3 in the proof of Theorem 2.6 in the
case where k = 3, n1 = 3, n2 = 5, and n3 = 7. Also, find an integer a such that
a ≡ 1 (mod 3), a ≡ −1 (mod 5), and a ≡ 5 (mod 7).

EXERCISE 2.15. If you want to show that you are a real nerd, here is an age-
guessing game you might play at a party. You ask a fellow party-goer to divide his
age by each of the numbers 3, 4, and 5, and tell you the remainders. Show how to
use this information to determine his age.

EXERCISE 2.16. Let {ni}ki=1 be a pairwise relatively prime family of positive
integers. Let a1, . . . , ak and b1, . . . , bk be integers, and set di := gcd(ai, ni) for
i = 1, . . . , k. Show that there exists an integer z such that aiz ≡ bi (mod ni) for
i = 1, . . . , k if and only if di | bi for i = 1, . . . , k.

EXERCISE 2.17. For each prime p, let νp(·) be defined as in §1.3. Let p1, . . . , pr
be distinct primes, a1, . . . , ar be arbitrary integers, and e1, . . . , er be arbitrary non-
negative integers. Show that there exists an integer a such that νpi (a − ai) = ei for
i = 1, . . . , r.

EXERCISE 2.18. Suppose n1 and n2 are positive integers, and let d := gcd(n1, n2).
Let a1 and a2 be arbitrary integers. Show that there exists an integer a such that
a ≡ a1 (mod n1) and a ≡ a2 (mod n2) if and only if a1 ≡ a2 (mod d).
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2.5 Residue classes
As we already observed in Theorem 2.2, for any fixed positive integer n, the binary
relation “· ≡ · (mod n)” is an equivalence relation on the set Z. As such, this
relation partitions the set Z into equivalence classes. We denote the equivalence
class containing the integer a by [a]n, and when n is clear from context, we simply
write [a]. By definition, we have

z ∈ [a] ⇐⇒ z ≡ a (mod n) ⇐⇒ z = a + ny for some y ∈ Z,

and hence

[a] = a + nZ := {a + ny : y ∈ Z}.

Historically, these equivalence classes are called residue classes modulo n, and we
shall adopt this terminology here as well. Note that a given residue class modulo n
has many different “names”; for example, the residue class [n − 1] is the same as
the residue class [−1]. Any member of a residue class is called a representative
of that class.

We define Zn to be the set of residue classes modulo n. The following is simply
a restatement of Theorem 2.4:

Theorem 2.7. Let n be a positive integer. Then Zn consists of the n distinct residue
classes [0], [1], . . . , [n− 1]. Moreover, for every x ∈ R, each residue class modulo
n contains a unique representative in the interval [x, x + n).

When working with residue classes modulo n, one often has in mind a partic-
ular set of representatives. Typically, one works with the set of representatives
{0, 1, . . . , n − 1}. However, sometimes it is convenient to work with another set
of representatives, such as the representatives in the interval [−n/2, n/2). In this
case, if n is odd, we can list the elements of Zn as

[−(n − 1)/2], . . . , [−1], [0], [1], . . . , [(n − 1)/2],

and when n is even, we can list the elements of Zn as

[−n/2], . . . , [−1], [0], [1], . . . , [n/2 − 1].

We can “equip” Zn with binary operations defining addition and multiplication
in a natural way as follows: for a, b ∈ Z, we define

[a] + [b] := [a + b],

[a] · [b] := [a · b].

Of course, one has to check that this definition is unambiguous, in the sense that
the sum or product of two residue classes should not depend on which particular
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representatives of the classes are chosen in the above definitions. More precisely,
one must check that if [a] = [a′] and [b] = [b′], then [a + b] = [a′ + b′] and
[a · b] = [a′ · b′]. However, this property follows immediately from Theorem 2.3.

Observe that for all a, b, c ∈ Z, we have

[a] + [b] = [c] ⇐⇒ a + b ≡ c (mod n),

and

[a] · [b] = [c] ⇐⇒ a · b ≡ c (mod n),

Example 2.7. Consider the residue classes modulo 6. These are as follows:

[0] = {. . . ,−12,−6, 0, 6, 12, . . .}
[1] = {. . . ,−11,−5, 1, 7, 13, . . .}
[2] = {. . . ,−10,−4, 2, 8, 14, . . .}
[3] = {. . . ,−9,−3, 3, 9, 15, . . .}
[4] = {. . . ,−8,−2, 4, 10, 16, . . .}
[5] = {. . . ,−7,−1, 5, 11, 17, . . .} .

Let us write down the addition and multiplication tables for Z6. The addition table
looks like this:

+ [0] [1] [2] [3] [4] [5]
[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4] .

The multiplication table looks like this:

· [0] [1] [2] [3] [4] [5]
[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1] .

Instead of using representatives in the interval [0, 6), we could just as well use
representatives from another interval, such as [−3, 3). Then, instead of naming the
residue classes [0], [1], [2], [3], [4], [5], we would name them [−3], [−2], [−1],
[0], [1], [2]. Observe that [−3] = [3], [−2] = [4], and [−1] = [5]. 2
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These addition and multiplication operations on Zn yield a very natural algebraic
structure. For example, addition and multiplication are commutative and associa-
tive; that is, for all α, β, γ ∈ Zn, we have

α + β = β + α, (α + β) + γ = α + (β + γ),

αβ = βα, (αβ)γ = α(βγ).

Note that we have adopted here the usual convention of writing αβ in place of α ·β.
Furthermore, multiplication distributes over addition; that is, for all α, β, γ ∈ Zn,
we have

α(β + γ) = αβ + αγ.

All of these properties follow from the definitions, and the corresponding proper-
ties for Z; for example, the fact that addition in Zn is commutative may be seen as
follows: if α = [a] and β = [b], then

α + β = [a] + [b] = [a + b] = [b + a] = [b] + [a] = β + α.

Because addition and multiplication in Zn are associative, for α1, . . . , αk ∈ Zn,
we may write the sum α1 + · · · + αk and the product α1 · · · αk without any paren-
theses, and there is no ambiguity; moreover, since both addition and multiplication
are commutative, we may rearrange the terms in such sums and products without
changing their values.

The residue class [0] acts as an additive identity; that is, for all α ∈ Zn, we have
α + [0] = α; indeed, if α = [a], then a + 0 ≡ a (mod n). Moreover, [0] is the only
element of Zn that acts as an additive identity; indeed, if a + z ≡ a (mod n) holds
for all integers a, then it holds in particular for a = 0, which implies z ≡ 0 (mod n).
The residue class [0] also has the property that α · [0] = [0] for all α ∈ Zn.

Every α ∈ Zn has an additive inverse, that is, an element β ∈ Zn such that
α + β = [0]; indeed, if α = [a], then clearly β := [−a] does the job, since
a + (−a) ≡ 0 (mod n). Moreover, α has a unique additive inverse; indeed, if
a + z ≡ 0 (mod n), then subtracting a from both sides of this congruence yields
z ≡ −a (mod n). We naturally denote the additive inverse of α by −α. Observe
that the additive inverse of −α is α; that is −(−α) = α. Also, we have the identities

−(α + β) = (−α) + (−β), (−α)β = −(αβ) = α(−β), (−α)(−β) = αβ.

For α, β ∈ Zn, we naturally write α − β for α + (−β).
The residue class [1] acts as a multiplicative identity; that is, for all α ∈ Zn, we

have α ·[1] = α; indeed, if α = [a], then a·1 ≡ a (mod n). Moreover, [1] is the only
element of Zn that acts as a multiplicative identity; indeed, if a·z ≡ a (mod n) holds
for all integers a, then in particular, it holds for a = 1, which implies z ≡ 1 (mod n).
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For α ∈ Zn, we call β ∈ Zn a multiplicative inverse of α if αβ = [1]. Not
all α ∈ Zn have multiplicative inverses. If α = [a] and β = [b], then β is a
multiplicative inverse of α if and only if ab ≡ 1 (mod n). Theorem 2.5 implies that
α has a multiplicative inverse if and only if gcd(a, n) = 1, and that if it exists, it is
unique. When it exists, we denote the multiplicative inverse of α by α−1.

We define Z∗n to be the set of elements of Zn that have a multiplicative inverse.
By the above discussion, we have

Z∗n = {[a] : a = 0, . . . , n − 1, gcd(a, n) = 1}.

If n is prime, then gcd(a, n) = 1 for a= 1, . . . , n−1, and we see that Z∗n =Zn\{[0]}.
If n is composite, then Z∗n ( Zn \ {[0]}; for example, if d | n with 1 < d < n, we
see that [d] is not zero, nor does it belong to Z∗n. Observe that if α, β ∈ Z∗n, then so
are α−1 and αβ; indeed,

(α−1)−1 = α and (αβ)−1 = α−1β−1.

For α ∈ Zn and β ∈ Z∗n, we naturally write α/β for αβ−1.
Suppose α, β, γ are elements of Zn that satisfy the equation

αβ = αγ.

If α ∈ Z∗n, we may multiply both sides of this equation by α−1 to infer that

β = γ.

This is the cancellation law for Zn. We stress the requirement that α ∈ Z∗n, and
not just α 6= [0]. Indeed, consider any α ∈ Zn \ Z∗n. Then we have α = [a] with
d := gcd(a, n) > 1. Setting β := [n/d] and γ := [0], we see that

αβ = αγ and β 6= γ.

Example 2.8. We list the elements of Z∗15, and for each α ∈ Z∗15, we also give α−1:

α [1] [2] [4] [7] [8] [11] [13] [14]
α−1 [1] [8] [4] [13] [2] [11] [7] [14] . 2

For α1, . . . , αk ∈ Zn, we may naturally write their sum as
∑k
i=1 αi. By conven-

tion, this sum is [0] when k = 0. It is easy to see that −
∑k
i=1 αi =

∑k
i=1(−αi);

that is, the additive inverse of the sum is the sum of the additive inverses. In the
special case where all the αi’s have the same value α, we define k · α :=

∑k
i=1 α;

thus, 0 · α = [0], 1 · α = α, 2 · α = α + α, 3 · α = α + α + α, and so on. The additive
inverse of k ·α is k · (−α), which we may also write as (−k) ·α; thus, (−1) ·α = −α,
(−2) · α = (−α) + (−α) = −(α + α), and so on. Therefore, the notation k · α, or
more simply, kα, is defined for all integers k. Note that for all integers k and a, we
have k[a] = [ka] = [k][a].
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For all α, β ∈ Zn and k, ` ∈ Z, we have the identities:

k(`α) = (k`)α = `(kα), (k + `)α = kα + `α, k(α + β) = kα + kβ,

(kα)β = k(αβ) = α(kβ).

Analogously, for α1, . . . , αk ∈ Zn, we may write their product as
∏k

i=1 αi. By
convention, this product is [1] when k = 0. It is easy to see that if all of the αi’s
belong to Z∗n, then so does their product, and in particular, (

∏k
i=1 αi)

−1 =
∏k

i=1 α
−1
i ;

that is, the multiplicative inverse of the product is the product of the multiplicative
inverses. In the special case where all the αi’s have the same value α, we define
αk :=

∏k
i=1 α; thus, α0 = [1], α1 = α, α2 = αα, α3 = ααα, and so on. If α ∈ Z∗n,

then the multiplicative inverse of αk is (α−1)k, which we may also write as α−k;
for example, α−2 = α−1α−1 = (αα)−1. Therefore, when α ∈ Z∗n, the notation αk is
defined for all integers k.

For all α, β ∈ Zn and all non-negative integers k and `, we have the identities:

(α`)k = αk` = (αk)`, αk+` = αkα`, (αβ)k = αkβk. (2.7)

If α, β ∈ Z∗n, the identities in (2.7) hold for all k, ` ∈ Z.
For all α1, . . . , αk, β1, . . . , β` ∈ Zn, the distributive property implies that

(α1 + · · · + αk)(β1 + · · · + β`) =
∑

1≤i≤k
1≤j≤`

αiβj.

One last notational convention. As already mentioned, when the modulus n
is clear from context, we usually write [a] instead of [a]n. Although we want to
maintain a clear distinction between integers and their residue classes, occasionally
even the notation [a] is not only redundant, but distracting; in such situations, we
may simply write a instead of [a]. For example, for every α ∈ Zn, we have the
identity (α + [1]n)(α − [1]n) = α2 − [1]n, which we may write more simply as
(α + [1])(α − [1]) = α2 − [1], or even more simply, and hopefully more clearly, as
(α+ 1)(α− 1) = α2− 1. Here, the only reasonable interpretation of the symbol “1”
is [1], and so there can be no confusion.

In summary, algebraic expressions involving residue classes may be manipulated
in much the same way as expressions involving ordinary numbers. Extra compli-
cations arise only because when n is composite, some non-zero elements of Zn do
not have multiplicative inverses, and the usual cancellation law does not apply for
such elements.

In general, one has a choice between working with congruences modulo n, or
with the algebraic structure Zn; ultimately, the choice is one of taste and conven-
ience, and it depends on what one prefers to treat as “first class objects”: integers
and congruence relations, or elements of Zn.
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An alternative, and somewhat more concrete, approach to constructing Zn is to
directly define it as the set of n “symbols” [0], [1], . . . , [n − 1], with addition and
multiplication defined as

[a] + [b] := [(a + b) mod n], [a] · [b] := [(a · b) mod n],

for a, b ∈ {0, . . . , n − 1}. Such a definition is equivalent to the one we have given
here. One should keep this alternative characterization of Zn in mind; however, we
prefer the characterization in terms of residue classes, as it is mathematically more
elegant, and is usually more convenient to work with.

We close this section with a reinterpretation of the Chinese remainder theorem
(Theorem 2.6) in terms of residue classes.

Theorem 2.8 (Chinese remainder map). Let {ni}ki=1 be a pairwise relatively
prime family of positive integers, and let n :=

∏k
i=1 ni. Define the map

θ : Zn → Zn1 × · · · × Znk
[a]n 7→ ([a]n1 , . . . , [a]nk ).

(i) The definition of θ is unambiguous.

(ii) θ is bijective.

(iii) For all α, β ∈ Zn, if θ(α) = (α1, . . . , αk) and θ(β) = (β1, . . . , βk), then:

(a) θ(α + β) = (α1 + β1, . . . , αk + βk);

(b) θ(−α) = (−α1, . . . ,−αk);

(c) θ(αβ) = (α1β1, . . . , αkβk);

(d) α ∈ Z∗n if and only if αi ∈ Z∗ni for i = 1, . . . , k, in which case
θ(α−1) = (α−1

1 , . . . , α−1
k ).

Proof. For (i), note that a ≡ a′ (mod n) implies a ≡ a′ (mod ni) for i = 1, . . . , k,
and so the definition of θ is unambiguous (it does not depend on the choice of a).

(ii) follows directly from the statement of the Chinese remainder theorem.
For (iii), let α = [a]n and β = [b]n, so that for i = 1, . . . , k, we have αi = [a]ni

and βi = [b]ni . Then we have

θ(α + β) = θ([a + b]n) = ([a + b]n1 , . . . , [a + b]nk ) = (α1 + β1, . . . , αk + βk),

θ(−α) = θ([−a]n) = ([−a]n1 , . . . , [−a]nk ) = (−α1, . . . ,−αk), and

θ(αβ) = θ([ab]n) = ([ab]n1 , . . . , [ab]nk ) = (α1β1, . . . , αkβk).
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That proves parts (a), (b), and (c). For part (d), we have

α ∈ Z∗n ⇐⇒ gcd(a, n) = 1

⇐⇒ gcd(a, ni) = 1 for i = 1, . . . , k

⇐⇒ αi ∈ Z∗ni for i = 1, . . . , k.

Moreover, if α ∈ Z∗n and β = α−1, then

(α1β1, . . . , αkβk) = θ(αβ) = θ([1]n) = ([1]n1 , . . . , [1]nk ),

and so for i = 1, . . . , k, we have αiβi = [1]ni , which is to say βi = α−1
i . 2

Theorem 2.8 is very powerful conceptually, and is an indispensable tool in many
situations. It says that if we want to understand what happens when we add or
multiply α, β ∈ Zn, it suffices to understand what happens when we add or multiply
their “components” αi, βi ∈ Zni . Typically, we choose n1, . . . , nk to be primes or
prime powers, which usually simplifies the analysis. We shall see many applica-
tions of this idea throughout the text.

EXERCISE 2.19. Let θ : Zn → Zn1 × · · · ×Znk be as in Theorem 2.8, and suppose
that θ(α) = (α1, . . . , αk). Show that for every non-negative integer m, we have
θ(αm) = (αm1 , . . . , αmk ). Moreover, if α ∈ Z∗n, show that this identity holds for all
integers m.

EXERCISE 2.20. Let p be an odd prime. Show that
∑

β∈Z∗p β
−1 =

∑

β∈Z∗p β = 0.

EXERCISE 2.21. Let p be an odd prime. Show that the numerator of
∑p−1
i=1 1/i is

divisible by p.

EXERCISE 2.22. Suppose n is square-free (see Exercise 1.15), and let α, β, γ ∈ Zn.
Show that α2β = α2γ implies αβ = αγ.

2.6 Euler’s phi function
Euler’s phi function (also called Euler’s totient function) is defined for all posi-
tive integers n as

ϕ(n) := |Z∗n|.

Equivalently, ϕ(n) is equal to the number of integers between 0 and n − 1 that are
relatively prime to n. For example, ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, and ϕ(4) = 2.

Using the Chinese remainder theorem, more specifically Theorem 2.8, it is easy
to get a nice formula for ϕ(n) in terms of the prime factorization of n, as we estab-
lish in the following sequence of theorems.
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Theorem 2.9. Let {ni}ki=1 be a pairwise relatively prime family of positive inte-
gers, and let n :=

∏k
i=1 ni. Then

ϕ(n) =
k
∏

i=1

ϕ(ni).

Proof. Consider the map θ : Zn → Zn1 × · · · × Znk in Theorem 2.8. By parts (ii)
and (iii.d) of that theorem, restricting θ to Z∗n yields a one-to-one correspondence
between Z∗n and Z∗n1

× · · · × Z∗nk . The theorem now follows immediately. 2

We already know that ϕ(p) = p − 1 for every prime p, since the integers
1, . . . , p − 1 are not divisible by p, and hence are relatively prime to p. The next
theorem generalizes this, giving us a formula for Euler’s phi function at prime
powers.

Theorem 2.10. Let p be a prime and e be a positive integer. Then

ϕ(pe) = pe−1(p − 1).

Proof. The multiples of p among 0, 1, . . . , pe − 1 are

0 · p, 1 · p, . . . , (pe−1 − 1) · p,

of which there are precisely pe−1. Thus, ϕ(pe) = pe − pe−1 = pe−1(p − 1). 2

If n = p
e1
1 · · · p

er
r is the factorization of n into primes, then the family of prime

powers {peii }
r
i=1 is pairwise relatively prime, and so Theorem 2.9 implies ϕ(n) =

ϕ(pe1
1 ) · · ·ϕ(perr ). Combining this with Theorem 2.10, we have:

Theorem 2.11. If n = p
e1
1 · · · p

er
r is the factorization of n into primes, then

ϕ(n) =
r
∏

i=1

p
ei−1
i (pi − 1) = n

r
∏

i=1

(1 − 1/pi).

EXERCISE 2.23. Show that ϕ(nm) = gcd(n,m) · ϕ(lcm(n,m)).

EXERCISE 2.24. Show that if n is divisible by r distinct odd primes, then 2r | ϕ(n).

EXERCISE 2.25. Define ϕ2(n) to be the number of integers a ∈ {0, . . . , n−1} such
that gcd(a, n) = gcd(a + 1, n) = 1. Show that if n = p

e1
1 · · · p

er
r is the factorization

of n into primes, then ϕ2(n) = n
∏r

i=1(1 − 2/pi).

2.7 Euler’s theorem and Fermat’s little theorem
Let n be a positive integer, and let α ∈ Z∗n.
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Consider the sequence of powers of α:

1 = α0, α1, α2, . . . .

Since each such power is an element of Z∗n, and since Z∗n is a finite set, this sequence
of powers must start to repeat at some point; that is, there must be a positive integer
k such that αk = αi for some i = 0, . . . , k − 1. Let us assume that k is chosen to be
the smallest such positive integer. This value k is called the multiplicative order
of α.

We claim that αk = 1. To see this, suppose by way of contradiction that αk = αi,
for some i = 1, . . . , k − 1; we could then cancel α from both sides of the equation
αk = αi, obtaining αk−1 = αi−1, which would contradict the minimality of k.

Thus, we can characterize the multiplicative order of α as the smallest positive
integer k such that

αk = 1.

If α = [a] with a ∈ Z (and gcd(a, n) = 1, since α ∈ Z∗n), then k is also called
the multiplicative order of a modulo n, and can be characterized as the smallest
positive integer k such that

ak ≡ 1 (mod n).

From the above discussion, we see that the first k powers of α, that is, α0, α1,
. . . , αk−1, are distinct. Moreover, other powers of α simply repeat this pattern. The
following is an immediate consequence of this observation.

Theorem 2.12. Let n be a positive integer, and let α be an element of Z∗n of
multiplicative order k. Then for every i ∈ Z, we have αi = 1 if and only if
k divides i. More generally, for all i, j ∈ Z, we have αi = αj if and only if
i ≡ j (mod k).

Example 2.9. Let n = 7. For each value a = 1, . . . , 6, we can compute successive
powers of a modulo n to find its multiplicative order modulo n.

i 1 2 3 4 5 6
1i mod 7 1 1 1 1 1 1
2i mod 7 2 4 1 2 4 1
3i mod 7 3 2 6 4 5 1
4i mod 7 4 2 1 4 2 1
5i mod 7 5 4 6 2 3 1
6i mod 7 6 1 6 1 6 1

So we conclude that modulo 7: 1 has order 1; 6 has order 2; 2 and 4 have order 3;
and 3 and 5 have order 6. 2
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Theorem 2.13 (Euler’s theorem). Let n be a positive integer and α ∈ Z∗n. Then
αϕ(n) = 1. In particular, the multiplicative order of α divides ϕ(n).

Proof. Since α ∈ Z∗n, for every β ∈ Z∗n we have αβ ∈ Z∗n, and so we may define the
“multiplication by α” map

τα : Z∗n → Z∗n
β 7→ αβ.

It is easy to see that τα is a bijection:
Injectivity: If αβ = αβ′, then cancel α to obtain β = β′.
Surjectivity: For every γ ∈ Z∗n, α−1γ is a pre-image of γ under τα.

Thus, as β ranges over the set Z∗n, so does αβ, and we have
∏

β∈Z∗n

β =
∏

β∈Z∗n

(αβ) = αϕ(n)
(

∏

β∈Z∗n

β
)

. (2.8)

Canceling the common factor
∏

β∈Z∗n β ∈ Z∗n from the left- and right-hand side of
(2.8), we obtain

1 = αϕ(n).

That proves the first statement of the theorem. The second follows immediately
from Theorem 2.12. 2

As a consequence of this, we obtain:

Theorem 2.14 (Fermat’s little theorem). For every prime p, and every α ∈ Zp,
we have αp = α.

Proof. If α = 0, the statement is obviously true. Otherwise, α ∈ Z∗p, and by
Theorem 2.13 we have αp−1 = 1. Multiplying this equation by α yields αp = α. 2

In the language of congruences, Fermat’s little theorem says that for every prime
p and every integer a, we have

ap ≡ a (mod p).

For a given positive integer n, we say that a ∈ Z with gcd(a, n) = 1 is a primitive
root modulo n if the multiplicative order of a modulo n is equal to ϕ(n). If this is
the case, then for α := [a] ∈ Z∗n, the powers αi range over all elements of Z∗n as
i ranges over the interval 0, . . . ,ϕ(n) − 1. Not all positive integers have primitive
roots—we will see in §7.5 that the only positive integers n for which there exists a
primitive root modulo n are

n = 1, 2, 4, pe, 2pe,

where p is an odd prime and e is a positive integer.
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The following theorem is sometimes useful in determining the multiplicative
order of an element in Z∗n.

Theorem 2.15. Suppose α ∈ Z∗n has multiplicative order k. Then for every m ∈ Z,
the multiplicative order of αm is k/ gcd(m, k).

Proof. Applying Theorem 2.12 to αm, we see that the multiplicative order of αm is
the smallest positive integer ` such that αm` = 1. But we have

αm` = 1 ⇐⇒ m` ≡ 0 (mod k) (applying Theorem 2.12 to α)

⇐⇒ ` ≡ 0 (mod k/ gcd(m, k)) (by part (ii) of Theorem 2.5). 2

EXERCISE 2.26. Find all elements of Z∗19 of multiplicative order 18.

EXERCISE 2.27. Let n ∈ Z with n > 1. Show that n is prime if and only if
αn−1 = 1 for every non-zero α ∈ Zn.

EXERCISE 2.28. Let n = pq, where p and q are distinct primes. Show that if
m := lcm(p − 1, q − 1), then αm = 1 for all α ∈ Z∗n.

EXERCISE 2.29. Let p be any prime other than 2 or 5. Show that p divides
infinitely many of the numbers 9, 99, 999, etc.

EXERCISE 2.30. Let n be an integer greater than 1. Show that n does not divide
2n − 1.

EXERCISE 2.31. Prove the following generalization of Fermat’s little theorem: for
every positive integer n, and every α ∈ Zn, we have αn = αn−ϕ(n).

EXERCISE 2.32. This exercise develops an alternative proof of Fermat’s little the-
orem.

(a) Using Exercise 1.14, show that for all primes p and integers a, we have
(a + 1)p ≡ ap + 1 (mod p).

(b) Now derive Fermat’s little theorem from part (a).

2.8 Quadratic residues
In §2.3, we studied linear congruences. It is natural to study congruences of higher
degree as well. In this section, we study a special case of this more general prob-
lem, namely, congruences of the form z2 ≡ a (mod n). The theory we develop here
nicely illustrates many of the ideas we have discussed earlier, and has a number of
interesting applications as well.
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We begin with some general, preliminary definitions and general observations
about powers in Z∗n. For each integer m, we define

(Z∗n)m := {βm : β ∈ Z∗n},

the set of mth powers in Z∗n. The set (Z∗n)m is non-empty, as it obviously contains
[1].

Theorem 2.16. Let n be a positive integer, let α, β ∈ Z∗n, and let m be any integer.

(i) If α ∈ (Z∗n)m, then α−1 ∈ (Z∗n)m.

(ii) If α ∈ (Z∗n)m and β ∈ (Z∗n)m, then αβ ∈ (Z∗n)m.

(iii) If α ∈ (Z∗n)m and β /∈ (Z∗n)m, then αβ /∈ (Z∗n)m.

Proof. For (i), if α = γm, then α−1 = (γ−1)m.
For (ii), if α = γm and β = δm, then αβ = (γδ)m.
For (iii), suppose that α ∈ (Z∗n)m, β /∈ (Z∗n)m, and αβ ∈ (Z∗n)m. Then by (i),

α−1 ∈ (Z∗n)m, and by (ii), β = α−1(αβ) ∈ (Z∗n)m, a contradiction. 2

Theorem 2.17. Let n be a positive integer. For each α ∈ Z∗n, and all `,m ∈ Z with
gcd(`,m) = 1, if α` ∈ (Z∗n)m, then α ∈ (Z∗n)m.

Proof. Suppose α` = βm ∈ (Z∗n)m. Since gcd(`,m) = 1, there exist integers s and t
such that `s + mt = 1. We then have

α = α`s+mt = α`sαmt = βmsαmt = (βsαt)m ∈ (Z∗n)m. 2

We now focus on the squares in Z∗n, rather than general powers. An integer a
is called a quadratic residue modulo n if gcd(a, n) = 1 and a ≡ b2 (mod n) for
some integer b; in this case, we say that b is a square root of a modulo n. In terms
of residue classes, a is a quadratic residue modulo n if and only if [a] ∈ (Z∗n)2.

To avoid some annoying technicalities, from now on, we shall consider only the
case where n is odd.

2.8.1 Quadratic residues modulo p
We first study quadratic residues modulo an odd prime p, and we begin by deter-
mining the square roots of 1 modulo p.

Theorem 2.18. Let p be an odd prime and β ∈ Zp. Then β2 = 1 if and only if
β = ±1.

Proof. Clearly, if β = ±1, then β2 = 1. Conversely, suppose that β2 = 1. Write
β = [b], where b ∈ Z. Then we have b2 ≡ 1 (mod p), which means that

p | (b2 − 1) = (b − 1)(b + 1),
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and since p is prime, we must have p | (b − 1) or p | (b + 1). This implies
b ≡ ±1 (mod p), or equivalently, β = ±1. 2

This theorem says that modulo p, the only square roots of 1 are 1 and −1, which
obviously belong to distinct residue classes (since p > 2). From this seemingly
trivial fact, a number of quite interesting and useful results may be derived.

Theorem 2.19. Let p be an odd prime and γ, β ∈ Z∗p. Then γ2 = β2 if and only if
γ = ±β.

Proof. This follows from the previous theorem:

γ2 = β2 ⇐⇒ (γ/β)2 = 1 ⇐⇒ γ/β = ±1 ⇐⇒ γ = ±β. 2

This theorem says that if α = β2 for some β ∈ Z∗p, then α has precisely two
square roots: β and −β.

Theorem 2.20. Let p be an odd prime. Then |(Z∗p)2| = (p − 1)/2.

Proof. By the previous theorem, the “squaring map” σ : Z∗p → Z∗p that sends β
to β2 is a two-to-one map: every element in the image of σ has precisely two pre-
images. As a general principle, if we have a function f : A → B, where A is a
finite set and every element in f (A) has exactly d pre-images, then |f (A)| = |A|/d.
Applying this general principle to our setting, we see that the image of σ is half the
size of Z∗p. 2

Thus, for every odd prime p, exactly half the elements of Z∗p are squares, and half
are non-squares. If we choose our representatives for the residue classes modulo p
from the interval [−p/2, p/2), we may list the elements of Zp as

[−(p − 1)/2], . . . , [−1], [0], [1], . . . , [(p − 1)/2].

We then see that Z∗p consists of the residue classes

[±1], . . . , [±(p − 1)/2],

and so (Z∗p)2 consists of the residue classes

[1]2, . . . , [(p − 1)/2]2,

which must be distinct, since we know that |(Z∗p)2| = (p − 1)/2.

Example 2.10. Let p = 7. We can list the elements of Z∗p as

[±1], [±2], [±3].

Squaring these, we see that

(Z∗p)2 = {[1]2, [2]2, [3]2} = {[1], [4], [2]}. 2
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We next derive an extremely important characterization of quadratic residues.

Theorem 2.21 (Euler’s criterion). Let p be an odd prime and α ∈ Z∗p.
(i) α(p−1)/2 = ±1.

(ii) If α ∈ (Z∗p)2 then α(p−1)/2 = 1.

(iii) If α /∈ (Z∗p)2 then α(p−1)/2 = −1.

Proof. For (i), let γ = α(p−1)/2. By Euler’s theorem (Theorem 2.13), we have

γ2 = αp−1 = 1,

and hence by Theorem 2.18, we have γ = ±1.
For (ii), suppose that α = β2. Then again by Euler’s theorem, we have

α(p−1)/2 = (β2)(p−1)/2 = βp−1 = 1.

For (iii), let α ∈ Z∗p \ (Z∗p)2. We study the product

ε :=
∏

β∈Z∗p

β.

We shall show that, on the one hand, ε = α(p−1)/2, while on the other hand, ε = −1.
To show that ε = α(p−1)/2, we group elements of Z∗p into pairs of distinct ele-

ments whose product is α. More precisely, let P := {S ⊆ Z∗p : |S| = 2}, and
define C := { {κ, λ} ∈ P : κλ = α}. Note that for every κ ∈ Z∗p, there is a unique
λ ∈ Z∗p such that κλ = α, namely, λ := α/κ; moreover, κ 6= λ, since otherwise,
we would have κ2 = α, contradicting the assumption that α /∈ (Z∗p)2. Thus, every
element of Z∗p belongs to exactly one pair in C; in other words, the elements of C
form a partition of Z∗p. It follows that

ε =
∏

{κ,λ}∈C

(κ · λ) =
∏

{κ,λ}∈C

α = α(p−1)/2.

To show that ε = −1, we group elements of Z∗p into pairs of distinct elements
whose product is [1]. Define D := { {κ, λ} ∈ P : κλ = 1}. For every κ ∈ Z∗p,
there exists a unique λ ∈ Z∗p such that κλ = 1, namely, λ := κ−1; moreover, κ = λ

if and only if κ2 = 1, and by Theorem 2.18, this happens if and only if κ = ±1.
Thus, every element of Z∗p except for [±1] belongs to exactly one pair in D; in
other words, the elements of D form a partition of Z∗p \ {[±1]}. It follows that

ε = [1] · [−1] ·
∏

{κ,λ}∈D

(κ · λ) = [−1] ·
∏

{κ,λ}∈D

[1] = −1. 2
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Thus, Euler’s criterion says that for every α ∈ Z∗p, we have α(p−1)/2 = ±1 and

α ∈ (Z∗p)2 ⇐⇒ α(p−1)/2 = 1.

In the course of proving Euler’s criterion, we proved the following result, which
we state here for completeness:

Theorem 2.22 (Wilson’s theorem). Let p be an odd prime. Then
∏

β∈Z∗p β = −1.

In the language of congruences, Wilson’s theorem may be stated as follows:

(p − 1)! ≡ −1 (mod p).

We also derive the following simple consequence of Theorem 2.21:

Theorem 2.23. Let p be an odd prime and α, β ∈ Z∗p. If α /∈ (Z∗p)2 and β /∈ (Z∗p)2,
then αβ ∈ (Z∗p)2.

Proof. Suppose α /∈ (Z∗p)2 and β /∈ (Z∗p)2. Then by Euler’s criterion, we have

α(p−1)/2 = −1 and β(p−1)/2 = −1.

Therefore,

(αβ)(p−1)/2 = α(p−1)/2 · β(p−1)/2 = [−1] · [−1] = 1,

which again by Euler’s criterion implies that αβ ∈ (Z∗p)2. 2

This theorem, together with parts (ii) and (iii) of Theorem 2.16, gives us the
following simple rules regarding squares in Z∗p:

square × square = square,
square × non-square = non-square,
non-square × non-square = square.

2.8.2 Quadratic residues modulo pe

We next study quadratic residues modulo pe, where p is an odd prime. The key is
to establish the analog of Theorem 2.18:

Theorem 2.24. Let p be an odd prime, e be a positive integer, and β ∈ Zpe . Then
β2 = 1 if and only if β = ±1.

Proof. Clearly, if β = ±1, then β2 = 1. Conversely, suppose that β2 = 1. Write
β = [b], where b ∈ Z. Then we have b2 ≡ 1 (mod pe), which means that

pe | (b2 − 1) = (b − 1)(b + 1).
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In particular, p | (b − 1)(b + 1), and so p | (b − 1) or p | (b + 1). Moreover, p
cannot divide both b − 1 and b + 1, as otherwise, it would divide their difference
(b + 1) − (b − 1) = 2, which is impossible (because p is odd). It follows that
pe | (b − 1) or pe | (b + 1), which means β = ±1. 2

Theorems 2.19–2.23 generalize immediately from Z∗p to Z∗pe : we really used
nothing in the proofs of these theorems other than the fact that ±1 are the only
square roots of 1 modulo p. As such, we state the analogs of these theorems for
Z∗pe without proof.

Theorem 2.25. Let p be an odd prime, e be a positive integer, and γ, β ∈ Z∗pe .
Then γ2 = β2 if and only if γ = ±β.

Theorem 2.26. Let p be an odd prime and e be a positive integer. Then we have
|(Z∗pe )2| = ϕ(pe)/2.

Theorem 2.27. Let p be an odd prime, e be a positive integer, and α ∈ Z∗pe .
(i) αϕ(pe)/2 = ±1.

(ii) If α ∈ (Z∗pe )2 then αϕ(pe)/2 = 1.

(iii) If α /∈ (Z∗pe )2 then αϕ(pe)/2 = −1.

Theorem 2.28. Let p be an odd prime and e be a positive integer. Then we have
∏

β∈Z∗
pe
β = −1.

Theorem 2.29. Let p be an odd prime, e be a positive integer, and α, β ∈ Z∗pe . If
α /∈ (Z∗pe )2 and β /∈ (Z∗pe )2, then αβ ∈ (Z∗pe )2.

It turns out that an integer is a quadratic residue modulo pe if and only if it is a
quadratic residue modulo p.

Theorem 2.30. Let p be an odd prime, e be a positive integer, and a be any integer.
Then a is a quadratic residue modulo pe if and only if a is a quadratic residue
modulo p.

Proof. Suppose that a is a quadratic residue modulo pe. Then a is not divisible by
p and a ≡ b2 (mod pe) for some integer b. It follows that a ≡ b2 (mod p), and so a
is a quadratic residue modulo p.

Suppose that a is not a quadratic residue modulo pe. If a is divisible by p, then
by definition a is not a quadratic residue modulo p. So suppose a is not divisible
by p. By Theorem 2.27, we have

ap
e−1(p−1)/2 ≡ −1 (mod pe).

This congruence holds modulo p as well, and by Fermat’s little theorem (applied
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e − 1 times),

a ≡ ap ≡ ap
2
≡ · · · ≡ ap

e−1
(mod p),

and so

−1 ≡ ap
e−1(p−1)/2 ≡ a(p−1)/2 (mod p).

Theorem 2.21 therefore implies that a is not a quadratic residue modulo p. 2

2.8.3 Quadratic residues modulo n
We now study quadratic residues modulo n, where n is an arbitrary, odd integer,
with n > 1. Let

n = p
e1
1 · · · p

er
r

be the prime factorization of n. Our main tools here are the Chinese remainder map

θ : Zn → Zpe11
× · · · × Zperr ,

introduced in Theorem 2.8, together with the results developed so far for quadratic
residues modulo odd prime powers.

Let α ∈ Z∗n with θ(α) = (α1, . . . , αr).

• On the one hand, suppose α = β2 for some β ∈ Z∗n. If θ(β) = (β1, . . . , βr),
we have

(α1, . . . , αr) = θ(α) = θ(β2) = (β2
1 , . . . , β2

r ),

where we have used part (iii.c) of Theorem 2.8. It follows that αi = β2
i for

each i.

• On the other hand, suppose that for each i, αi = β2
i for some βi ∈ Z∗piei .

Then setting β := θ−1(β1, . . . , βr), we have

θ(β2) = (β2
1 , . . . , β2

r ) = (α1, . . . , αr) = θ(α),

where we have again used part (iii.c) of Theorem 2.8, along with the fact
that θ is bijective (to define β). Thus, θ(α) = θ(β2), and again since θ is
bijective, it follows that α = β2.

We have shown that

α ∈ (Z∗n)2 ⇐⇒ αi ∈
(

Z∗
p
ei
i

)2 for i = 1, . . . , r.

In particular, restricting θ to (Z∗n)2 yields a one-to-one correspondence between
(Z∗n)2 and

(

Z∗
p
e1
1

)2 × · · · ×
(

Z∗prer
)2,
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and therefore, by Theorem 2.26 (and Theorem 2.9), we have

|(Z∗n)2| =
r
∏

i=1

(ϕ(peii )/2) = ϕ(n)/2r.

Now suppose that α = β2, with β ∈ Z∗n and θ(β) = (β1, . . . , βr). Consider an
arbitrary element γ ∈ Z∗n, with θ(γ) = (γ1, . . . , γr). Then we have

γ2 = β2 ⇐⇒ θ(γ2) = θ(β2)

⇐⇒ (γ2
1 , . . . , γ2

r ) = (β2
1 , . . . , β2

r )

⇐⇒ (γ1, . . . , γr) = (±β1, . . . ,±βr) (by Theorem 2.25).

Therefore, α has precisely 2r square roots, namely, θ−1(±β1, . . . ,±βr).

2.8.4 Square roots of −1 modulo p
Using Euler’s criterion, we can easily characterize those primes modulo which −1
is a quadratic residue. This turns out to have a number of nice applications.

Consider an odd prime p. The following theorem says that the question of
whether −1 is a quadratic residue modulo p is decided by the residue class of p
modulo 4. Since p is odd, either p ≡ 1 (mod 4) or p ≡ 3 (mod 4).

Theorem 2.31. Let p be an odd prime. Then −1 is a quadratic residue modulo p
if and only p ≡ 1 (mod 4).

Proof. By Euler’s criterion, −1 is a quadratic residue modulo p if and only if
(−1)(p−1)/2 ≡ 1 (mod p). If p ≡ 1 (mod 4), then (p − 1)/2 is even, and so
(−1)(p−1)/2 = 1. If p ≡ 3 (mod 4), then (p−1)/2 is odd, and so (−1)(p−1)/2 = −1. 2

In fact, when p ≡ 1 (mod 4), any non-square in Z∗p yields a square root of −1
modulo p, as follows:

Theorem 2.32. Let p be a prime with p ≡ 1 (mod 4), γ ∈ Z∗p \ (Z∗p)2, and
β := γ (p−1)/4. Then β2 = −1.

Proof. This is a simple calculation, based on Euler’s criterion:

β2 = γ (p−1)/2 = −1. 2

The fact that −1 is a quadratic residue modulo primes p ≡ 1 (mod 4) can be
used to prove Fermat’s theorem that such primes may be written as the sum of two
squares. To do this, we first need the following technical lemma:
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Theorem 2.33 (Thue’s lemma). Let n, b, r∗, t∗ ∈ Z, with 0 < r∗ ≤ n < r∗t∗.
Then there exist r, t ∈ Z with

r ≡ bt (mod n), |r| < r∗, and 0 < |t| < t∗.

Proof. For i = 0, . . . , r∗−1 and j = 0, . . . , t∗−1, we define the number vij := i−bj.
Since we have defined r∗t∗ numbers, and r∗t∗ > n, two of these numbers must lie
in the same residue class modulo n; that is, for some (i1, j1) 6= (i2, j2), we have
vi1j1 ≡ vi2j2 (mod n). Setting r := i1−i2 and t := j1−j2, this implies r ≡ bt (mod n),
|r| < r∗, |t| < t∗, and that either r 6= 0 or t 6= 0. It only remains to show that t 6= 0.
Suppose to the contrary that t = 0. This would imply that r ≡ 0 (mod n) and r 6= 0,
which is to say that r is a non-zero multiple of n; however, this is impossible, since
|r| < r∗ ≤ n. 2

Theorem 2.34 (Fermat’s two squares theorem). Let p be an odd prime. Then
p = r2 + t2 for some r, t ∈ Z if and only if p ≡ 1 (mod 4).

Proof. One direction is easy. Suppose p ≡ 3 (mod 4). It is easy to see that the
square of every integer is congruent to either 0 or 1 modulo 4; therefore, the sum of
two squares is congruent to either 0, 1, or 2 modulo 4, and so can not be congruent
to p modulo 4 (let alone equal to p).

For the other direction, suppose p ≡ 1 (mod 4). We know that −1 is a quadratic
residue modulo p, so let b be an integer such that b2 ≡ −1 (mod p). Now apply
Theorem 2.33 with n := p, b as just defined, and r∗ := t∗ := b√pc + 1. Evidently,
b√pc + 1 > √p, and hence r∗t∗ > p. Also, since p is prime, √p is not an integer,
and so b√pc < √p < p; in particular, r∗ = b√pc + 1 ≤ p. Thus, the hypotheses of
that theorem are satisfied, and therefore, there exist integers r and t such that

r ≡ bt (mod p), |r| ≤ b√pc < √p, and 0 < |t| ≤ b√pc < √p.

It follows that

r2 ≡ b2t2 ≡ −t2 (mod p).

Thus, r2 + t2 is a multiple of p and 0 < r2 + t2 < 2p. The only possibility is that
r2 + t2 = p. 2

The fact that −1 is a quadratic residue modulo an odd prime p only if p ≡
1 (mod 4) can be used so show there are infinitely many such primes.

Theorem 2.35. There are infinitely many primes p ≡ 1 (mod 4).

Proof. Suppose there were only finitely many such primes, p1, . . . , pk. Set M :=
∏k

i=1 pi and N := 4M2 + 1. Let p be any prime dividing N . Evidently, p
is not among the pi’s, since if it were, it would divide both N and 4M2, and
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so also N − 4M2 = 1. Also, p is clearly odd, since N is odd. Moreover,
(2M)2 ≡ −1 (mod p); therefore, −1 is a quadratic residue modulo p, and so
p ≡ 1 (mod 4), contradicting the assumption that p1, . . . , pk are the only such
primes. 2

For completeness, we also state the following fact:

Theorem 2.36. There are infinitely many primes p ≡ 3 (mod 4).

Proof. Suppose there were only finitely many such primes, p1, . . . , pk. Set M :=
∏k

i=1 pi and N := 4M − 1. Since N ≡ 3 (mod 4), there must be some prime
p ≡ 3 (mod 4) dividingN (if all primes dividingN were congruent to 1 modulo 4,
then so too would be their product N). Evidently, p is not among the pi’s, since if
it were, it would divide bothN and 4M , and so also 4M−N = 1. This contradicts
the assumption that p1, . . . , pk are the only primes congruent to 3 modulo 4. 2

EXERCISE 2.33. Let n,m ∈ Z, where n > 0, and let d := gcd(m,ϕ(n)). Show
that:

(a) if d = 1, then (Z∗n)m = (Z∗n);

(b) if α ∈ (Z∗n)m, then αϕ(n)/d = 1.

EXERCISE 2.34. Calculate the sets C and D in the proof of Theorem 2.21 in the
case p = 11 and α = −1.

EXERCISE 2.35. Calculate the square roots of 1 modulo 4, 8, and 16.

EXERCISE 2.36. Let n ∈ Z with n > 1. Show that n is prime if and only if
(n − 1)! ≡ −1 (mod n).

EXERCISE 2.37. Let p be a prime with p ≡ 1 (mod 4), and b := ((p − 1)/2)!.
Show that b2 ≡ −1 (mod p).

EXERCISE 2.38. Let n := pq, where p and q are distinct, odd primes. Show that
there exist α, β ∈ Z∗n such that α /∈ (Z∗n)2, β /∈ (Z∗n)2, and αβ /∈ (Z∗n)2.

EXERCISE 2.39. Let n be an odd positive integer, and let a be any integer. Show
that a is a quadratic residue modulo n if and only if a is a quadratic residue modulo
p for each prime p | n.

EXERCISE 2.40. Show that if p is an odd prime, with p ≡ 3 (mod 4), then
(Z∗p)4 = (Z∗p)2. More generally, show that if n is an odd positive integer, where
p ≡ 3 (mod 4) for each prime p | n, then (Z∗n)4 = (Z∗n)2.

EXERCISE 2.41. Let p be an odd prime, and let e ∈ Z with e > 1. Let a be an
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integer of the form a = pfb, where 0 ≤ f < e and p - b. Consider the integer
solutions z to the congruence z2 ≡ a (mod pe). Show that a solution exists if and
only if f is even and b is a quadratic residue modulo p, in which case there are
exactly 2pf distinct solutions modulo pe.

EXERCISE 2.42. Suppose p is an odd prime, and that r2+ t2 = p for some integers
r, t. Show that if x, y are integers such that x2+y2 = p, then (x, y) must be (±r,±t)
or (±t,±r).

EXERCISE 2.43. Show that if both u and v are the sum of two squares of integers,
then so is their product uv.

EXERCISE 2.44. Suppose r2 + t2 ≡ 0 (mod n), where n is a positive integer, and
suppose p is an odd prime dividing n. Show that:

(a) if p divides neither r nor t, then p ≡ 1 (mod 4);

(b) if p divides one of r or t, then it divides the other, and moreover, p2 divides
n, and (r/p)2 + (t/p)2 ≡ 0 (mod n/p2).

EXERCISE 2.45. Let n be a positive integer, and write n = ab2 where a and b are
positive integers, and a is square-free (see Exercise 1.15). Show that n is the sum
of two squares of integers if and only if no prime p ≡ 3 (mod 4) divides a. Hint:
use the previous two exercises.

2.9 Summations over divisors
We close this chapter with a brief treatment of summations over divisors. To this
end, we introduce some terminology and notation. By an arithmetic function,
we simply mean a function from the positive integers into the reals (actually, one
usually considers complex-valued functions as well, but we shall not do so here).
Let f and g be arithmetic functions. The Dirichlet product of f and g, denoted
f ? g, is the arithmetic function whose value at n is defined by the formula

(f ? g)(n) :=
∑

d|n

f (d)g(n/d),

the sum being over all positive divisors d of n. Another, more symmetric, way to
write this is

(f ? g)(n) =
∑

n=d1d2

f (d1)g(d2),

the sum being over all pairs (d1, d2) of positive integers with d1d2 = n.
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The Dirichlet product is clearly commutative (i.e., f ? g = g ? f ), and is asso-
ciative as well, which one can see by checking that

(f ? (g ? h))(n) =
∑

n=d1d2d3

f (d1)g(d2)h(d3) = ((f ? g) ? h)(n),

the sum being over all triples (d1, d2, d3) of positive integers with d1d2d3 = n.
We now introduce three special arithmetic functions: I , 1, and µ. The functions

I and 1 are defined as follows:

I (n) :=
{

1 if n = 1;
0 if n > 1;

1(n) := 1.

The Möbius function µ is defined as follows: if n = p
e1
1 · · · p

er
r is the prime factor-

ization of n, then

µ(n) :=
{

0 if ei > 1 for some i = 1, . . . , r;
(−1)r otherwise.

In other words, µ(n) = 0 if n is not square-free (see Exercise 1.15); otherwise,
µ(n) is (−1)r where r is the number of distinct primes dividing n. Here are some
examples:

µ(1) = 1, µ(2) = −1, µ(3) = −1, µ(4) = 0, µ(5) = −1, µ(6) = 1.

It is easy to see from the definitions that for every arithmetic function f , we have

I ? f = f and (1 ? f )(n) =
∑

d|n

f (d).

Thus, I acts as a multiplicative identity with respect to the Dirichlet product, while
“1 ? ” acts as a “summation over divisors” operator.

An arithmetic function f is called multiplicative if f (1) = 1 and for all positive
integers n,m with gcd(n,m) = 1, we have f (nm) = f (n)f (m).

The reader may easily verify that I , 1, and µ are multiplicative functions. Theo-
rem 2.9 says that Euler’s function ϕ is multiplicative. The reader may also verify
the following:

Theorem 2.37. If f is a multiplicative arithmetic function, and if n = p
e1
1 · · · p

er
r

is the prime factorization of n, then f (n) = f (pe1
1 ) · · · f (perr ).

Proof. Exercise. 2

A key property of the Möbius function is the following:



2.9 Summations over divisors 47

Theorem 2.38. Let f be a multiplicative arithmetic function. If n = p
e1
1 · · · p

er
r is

the prime factorization of n, then
∑

d|n

µ(d)f (d) = (1 − f (p1)) · · · (1 − f (pr)). (2.9)

Proof. The only non-zero terms appearing in the sum on the left-hand side of (2.9)
are those corresponding to divisors d of the form pi1 · · · pi` , where pi1 , . . . , pi` are
distinct; the value contributed to the sum by such a term is (−1)`f (pi1 · · · pi` ) =
(−1)`f (pi1 ) · · · f (pi` ). These are the same as the terms in the expansion of the
product on the right-hand side of (2.9). 2

If we set f := 1 in the previous theorem, then we see that
∑

d|n

µ(d) =
{

1 if n = 1;
0 if n > 1.

Translating this into the language of Dirichlet products, we have

1 ? µ = I .

Thus, with respect to the Dirichlet product, the functions 1 and µ are multiplicative
inverses of one another. Based on this, we may easily derive the following:

Theorem 2.39 (Möbius inversion formula). Let f and F be arithmetic functions.
Then F = 1 ? f if and only if f = µ ? F .

Proof. If F = 1 ? f , then

µ ? F = µ ? (1 ? f ) = (µ ? 1) ? f = I ? f = f ,

and conversely, if f = µ ? F , then

1 ? f = 1 ? (µ ? F ) = (1 ? µ) ? F = I ? F = F . 2

The Möbius inversion formula says this:

F (n) =
∑

d|n

f (d) for all positive integers n

⇐⇒ f (n) =
∑

d|n

µ(d)F (n/d) for all positive integers n.

The Möbius inversion formula is a useful tool. As an application, we use it to
obtain a simple proof of the following fact:

Theorem 2.40. For every positive integer n, we have
∑

d|n ϕ(d) = n.
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Proof. Let us define the arithmetic functions N (n) := n and M (n) := 1/n. Our
goal is to show that N = 1 ? ϕ, and by Möbius inversion, it suffices to show that
µ ? N = ϕ. If n = p

e1
1 · · · p

er
r is the prime factorization of n, we have

(µ ? N)(n) =
∑

d|n

µ(d)(n/d) = n
∑

d|n

µ(d)/d

= n

r
∏

i=1

(1 − 1/pi) (applying Theorem 2.38 with f :=M)

= ϕ(n) (by Theorem 2.11). 2

EXERCISE 2.46. In our definition of a multiplicative function f , we made the
requirement that f (1) = 1. Show that if we dropped this requirement, the only
other function that would satisfy the definition would be the zero function (i.e., the
function that is everywhere zero).

EXERCISE 2.47. Let f be a polynomial with integer coefficients, and for each
positive integer n, define ωf (n) to be the number of integers x ∈ {0, . . . , n − 1}
such that f (x) ≡ 0 (mod n). Show that ωf is multiplicative.

EXERCISE 2.48. Show that if f and g are multiplicative, then so is f ? g. Hint:
use Exercise 1.18.

EXERCISE 2.49. Let τ(n) be the number of positive divisors of n. Show that:

(a) τ is a multiplicative function;

(b) τ(n) =
∏r

i=1(ei + 1), where n = p
e1
1 · · · p

er
r is the prime factorization of n;

(c)
∑

d|n µ(d)τ(n/d) = 1;

(d)
∑

d|n µ(d)τ(d) = (−1)r, where n = pe1
1 · · · p

er
r is the prime factorization of n.

EXERCISE 2.50. Define σ(n) :=
∑

d|n d. Show that:

(a) σ is a multiplicative function;

(b) σ(n) =
∏r

i=1(pei+1
i − 1)/(pi − 1), where n = p

e1
1 · · · p

er
r is the prime factor-

ization of n;

(c)
∑

d|n µ(d)σ(n/d) = n;

(d)
∑

d|n µ(d)σ(d) = (−1)rp1 · · · pr, where n = p
e1
1 · · · p

er
r is the prime factor-

ization of n.

EXERCISE 2.51. The Mangoldt function Λ(n) is defined for all positive integers
n as follows: Λ(n) := log p, if n = pk for some prime p and positive integer k, and
Λ(n) := 0, otherwise. Show that

∑

d|nΛ(d) = log n, and from this, deduce that
Λ(n) = −

∑

d|n µ(d) log d.
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EXERCISE 2.52. Show that if f is multiplicative, and if n = p
e1
1 · · · p

er
r is the prime

factorization of n, then
∑

d|n µ(d)2f (d) = (1 + f (p1)) · · · (1 + f (pr)).

EXERCISE 2.53. Show that n is square-free if and only if
∑

d|n µ(d)2ϕ(d) = n.

EXERCISE 2.54. Show that for every arithmetic function f with f (1) 6= 0, there
is a unique arithmetic function g, called the Dirichlet inverse of f , such that
f ? g = I . Also, show that if f (1) = 0, then f has no Dirichlet inverse.

EXERCISE 2.55. Show that if f is a multiplicative function, then so is its Dirichlet
inverse (as defined in the previous exercise).

EXERCISE 2.56. This exercise develops an alternative proof of Theorem 2.40 that
does not depend on Theorem 2.11. Let n be a positive integer. Define

Fn := {i/n ∈ Q : i = 0, . . . , n − 1}.

Also, for each positive integer d, define

Gd := {a/d ∈ Q : a ∈ Z, gcd(a, d) = 1}.

(a) Show that for each x ∈ Fn, there exists a unique positive divisor d of n such
that x ∈ Gd.

(b) Show that for each positive divisor d of n, we have

Fn ∩ Gd = {a/d : a = 0, . . . , d − 1, gcd(a, d) = 1}.

(c) Using (a) and (b), show that
∑

d|n ϕ(d) = n.

EXERCISE 2.57. Using Möbius inversion, directly derive Theorem 2.11 from The-
orem 2.40.


